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A general numerical method for calculation of concentrations
of vacancies and ionic and electronic defects in solids in equilib-
rium with two gas pressures is presented. The method is applied
to 5 at% B-site doped SrCeO3 in equilibrium with oxygen and
water vapor. The model includes protons and electronic defects,
as well as cation vacancies on the A and B sites. The 10 concen-
trations in the model are determined uniquely by solving the
linear and mass action law type equations in a rational sequence.
No approximations or truncations of the equations are neces-
sary. No information on the magnitude of the Schottky-equilib-
rium constant, Ks , controlling the population of cation vacancies
is available. Limiting values of Ks were tested to illustrate sup-
pression and enhancement of cation vacancy formation in perov-
skites. Deviations from Sieverts law are demonstrated. Deviation
of the A/B ratio from unity has the same effect on the proton
content as an increase of the dopant level. ( 1999 Academic Press

Key Words: Brouwer diagram; calculation; trial and error;
protonic; electronic; defects; perovskite.

INTRODUCTION

The traditional strategies for defect concentration calcu-
lations on doped, mixed conducting oxides rely on (i)
omission of concentration terms from the electroneutrality
equation for species of low concentration and (ii) assump-
tions for certain (high) concentrations of the host ions or
oxygen vacancies, namely, that these are virtually indepen-
dent of the partial pressure of oxygen. The analytical expres-
sions one derives using these approximations are seldom of
higher order than cubic. A typical approximative approach
is employed in Ref. (1) for doped ceria. Approximation
methods describe well the defect chemistry in regions of
oxygen partial pressure, where predominantly p-type, pre-
dominantly ionic, or predominantly n-type behavior is ob-
served. The procedure, however, fails to describe regions
over one to three decades of oxygen partial pressure, where
transitions from one defect type regime to the next take
place. The approximation procedure becomes questionable
with regard both to pedagogical value and to precision,
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when the defect chemistry of the solid is established by
equilibration with two or more gases. Along the same line,
Schottky-type equilibria involving more than two types of
ions, such as the chemical equilibrium for perovskites asso-
ciated with Eq. [7], are never considered in approximative
solutions, since such third or higher order expressions in
concentration are rather intractable to approximations.
Nowotny and Rekas (2) recently modeled sub- and over
stoichiometric (in oxygen) (La,Sr)MnO

3
, but their solution

is only valid under the restriction that [» DDD

L!
]"[» DDD

M/
]; i.e., it

only applies to the case where the A/B-ratio equals unity.
Commercial equation solving codes can in principle solve
all defect, mass balance, and electroneutrality equations
simultaneously by minimizing the residuals of the equa-
tions; see Ref. (3). The author’s experience is that such codes
often diverge or oscillate, since some of the partial pressures
and concentrations are extremely small, while other concen-
trations simultaneously are large. Complete analytical ex-
pressions, obtained by substituting the linear equations into
the nonlinear mass action law expressions will unavoidably
lead to polynomials of high order in the unknown concen-
trations. An example of an exact defect description of a pro-
ton containing perovskite, resulting in a fourth degree
polynomium, is presented by Bonanos and Poulsen in Ref.
(4). However, as a general approach, the derivation of ana-
lytical, high order analytical expression (which would have
to be solved by numerical means anyhow) appears therefore
not to furnish a practical strategy.

The present procedure is general and calculates the con-
centrations in a stepwise manner, identifying the correct set
of concentrations by a screening test. The partial pressure of
oxygen, or alternatively of water vapor, corresponding to
such a set of concentrations is finally calculated. This
method was successfully used by us in 1993 on the B-site-
doped perovskite NdCr

1~x
Ti

x
O

3$d (5).We demonstrated in
1997 the applicability of the method to the more complex
case of simultaneous presence of protonic, oxidic, and elec-
tronic defects in fluorite structure oxides (6). A similar
mathematical principle was used by Spinolo and Anselmi-
Tamburini in 1995 (7) to calculate defect concentrations in
0022-4596/99 $30.00
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oxides with interstitial cations having charges from
0 to #4. A more generalized treatment was given by
Spinolo et al. in 1997 (8).

MATHEMATICAL FOUNDATION OF THE METHOD

(i) A model is formulated containing N different ionic
and electronic species (neutral or charged); The Kröger—
Vink notation (9) is used in the present paper. The word
‘‘species’’ means in the following any ion, neutral atom,
electron- or electron hole defect and vacancy in the solid,
including the proton attached to a lattice oxygen; cf.
Table 1.

(ii) N independent equations are derived from mass bal-
ances, site balances, the electroneutrality condition, internal
ionic and electronic equilibria, and finally equilibria be-
tween the solid sample and the gas atmosphere (typically
equilibria with oxygen and/or water vapor). This set of
equations is checked for presence of redundant equations
(linear combinations of the other equations). Until this
point we have followed a traditional route.

(iii) The calculation algorithm requires a species to be
selected, the concentration of which will traverse several
orders of magnitude, as the partial pressure of oxygen
and/or water vapor is varied. It is a further functional
requirement that the concentration of this species must vary
monotonically with the gas pressure. At least four lattice
species behave in this manner: There must exist a mono-
tonic relation between the pO

2
of a gas in equilibrium with

an oxide and the chemical potential of oxygen in the solid
(and therefore also some monotonic relationship to the
‘‘chemical activity’’ of oxygen vacancies); similarly one can
assume that the electron and electron hole concentrations
bear a monotonic relationship to the reducing/oxidizing
potential of the gas equilibrating with the solid. In the case
of protonic and electronic defects in fluorite structure ox-
ides, the electron hole concentration was most conveniently
chosen as the running parameter. In the case of perovskites
with inclusion of cation vacancies we use the oxygen va-
cancy concentration, [»zz

O
] (see the following sections). For

generality, let this species be named i, and let the concentra-
tion interval of interest for species i be min([i](max. We
will find solutions for all concentrations of the other species
TABLE 1
Simplest Realistic Defect Model for B-Site Doped SrCeO3

A site B site O site Delocalized

Sr]
A

Ce]
B

O]
O

hz
»

DD

A
YD

B
»zz

O
eD

»
DDDD

B
OHz

O

Note. The dopant, Y, is assumed to be trivalent.
corresponding to a selection of values of [i] in this interval.
It is convenient to vary [i] in logarithmic steps through the
interval min([i](max. By fixing one concentration with-
in its physically possible interval, we have in effect added
one (simple linear) equation to the set of N equations. We
are therefore free to ‘‘avoid’’ one of the more problematic
equations, which will typically be one of the high order mass
action law expressions. An alternative way of explaining the
basis of the present method is formulated as follows:
In a series of physicochemical measurements on a non-
stoichiometric oxide we normally consider temperature and
partial pressure of oxygen as independent variables (con-
trolled by the operator) and the concentrations as the de-
pendent variables. The latter statement relates solely to
a statistical treatment. From a computational point of view,
however, one is free to select any two parameters as inde-
pendent variables (here we choose one temperature, which
in turn fixes all equilibrium constants and one concentra-
tion), if this makes the calculation simpler.

(iv) If the solid is in equilibrium with two different gasses,
of pressure p

1
and p

2
, respectively, we will identify solutions

for discrete values of p
1

in the interval p
.*/

(p
1
(p

.!9
.

Thus p
1

will be fixed for each trial and error calculation of
the concentrations. A number of the N equations identified
under (ii) are linear. By insertion of [i] into these, we find
some of the other concentrations. Substitution of the re-
maining linear equations into properly selected mass law
expressions leads to quadratic equations, which are solved
analytically. Eventually all concentrations are found by this
procedure. What remains is to ensure that the concentra-
tions are positive and below their maximum allowed magni-
tude (e.g., in crystals, a site cannot be more than 100%
occupied). Invalid solution sets will disqualify themselves by
containing one or more negative, complex, or too large
positive roots among the calculated N concentrations. The
approved set of concentrations are inserted into the equa-
tion having the highest order, which has not yet been em-
ployed (typically the equilibrium expression for reaction
with oxygen). Thereby the corresponding p

2
"pO

2
is

found.

APPLICATION TO DOPED STRONTIUM CERATE

A- and/or B-site-doped perovskites can in principle exist
in both an over- and an understoichiometric state depend-
ing on the redox properties of the A and B ions, temper-
ature, and partial pressure of oxygen. The present model is
made general in order to take account of this: in the over-
stoichiometric regime cation vacancies have to be assumed,
as verified in doped and undoped LaMnO

3`d
by neutron

diffraction (10) and oxygen content measurements (11).
There is no room for interstitial oxygens in a perovskite
structure. The model is furthermore made complete by
including protonic species. Doped SrCeO

3
and, in more
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recent years, also Sr- and Ca-zirconates have been intensely
studied by Iwahara and co-workers (12,13) as a new class of
high-temperature protonic conductors. Table 1 summarizes
the species in the general model, using the Kröger—Vink
notation with the ionic charges of Sr(II)Ce(IV)O

3
as the

reference state. It requires 10 different ‘‘species’’ in the
present model to describe fully the defect chemistry of
Sr

z
Ce

1~x
Y

x
O

3~x@2BdHe . Protons are residing on lattice
oxygens, OHz

O
, in the present description. The site conserva-

tion equation [3] would have to be modified if protons were
assigned an individual ‘‘life’’ as interstitial protons, Hz

*
.

The 10 independent equations, describing the system
uniquely, are as follows. Note the special notation for con-
centrations of electronic defects: concentration of holes [hz]
is denoted ‘p’; concentration of electrons [eD] is given by n in
the equations below.

Site balances:

Sr site [Sr]
A
]#[» DD

A
]"1 [1]

Ce site [Ce]
B
]#[YD

B
]#[»DDDD

B
]"1 [2]

Oxide site [»zz
O

]#[O]
O
]#[OHz

O
]"3. [3]

Mass balances:

[Ce]
B
]/[YD

B
]"(1!x)/x [4]

A/B ratio ,[Sr]
A
]/([Ce]

B
]#[YD

B
])"z. [5]

Electroneutrality condition:

2 ) [»DD

A
]#[YD

B
]#4 ) [»DDDD

B
]#n"2 ) [»zz

O
]#[OHz

O
]#p.

[6]

Mass action laws:
Schottky reaction for vacancy generation:

nil% 3 »zz
O
#»

DD

A
#»

DDDD

B

N[»zz
O

]3 ) [»DD

A
] ) [»DDDD

B
]"K

4
. [7]

Internal electronic equilibrium:

K
*
"n ) p [8]

Equilibria between the solid sample and the gas atmosphere:

1
2
O

2
(gas)#»zz

O
%O]

O
#2hz

NK
09
"[O]

O
] ) p2/(pO1@2

2
) [»zz

O
]) [9]

H
2
O(gas)#»zz

O
#O]

O
% 2OHz

O

NK
8
"[OHz

O
]2/(pH

2
O ) [»zz

O
] ) [O]

O
]). [10]
The solutions for the cation concentrations are not trivial
when cation vacancies are included. The 10 equations group
into 6 linear expressions and 4 nonlinear ones. An analytical
expression in one of the concentrations could in principle be
obtained by substitution; it would probably result in a poly-
nomium of the 6@—9@ degree for this model. It is demon-
strated below that the system of equations can be solved in
a simple way, assuming a smart strategy is applied.

We want to carry out a calculation for known values of
the four equilibrium constants, Eqs. [7]—[10], and for
a known dopant level x and A/B ratio"z. We furthermore
specify a number of pH

2
O values, at which the calculation is

required.
The stepwise calculation proceeds as follows: We assume

a value for [»zz
O

] and pH
2
O.

By substituting Eq. [10] into Eq. [3] one obtains a quad-
ratic equation in [OHz

O
] reading

[OHz
O
]2/([»zz

O
] ) pH

2
O )K

8
)#[»zz

O
]#[OHz

O
]!3"0.

[11]

Equation [11] is solved analytically.
[O]

O
] is then found from Eq. [3]:

[O]
O
]"3![»zz

O
]![OHz

O
]. [3@]

The next task is to express [»DD

B
] and [»DDDD

B
] by [YD

B
]

making use of Eqs. [1], [2], and [4] and to insert these in
Eq. [7]. The resulting expression in [YD

B
] is still only of

second order in [YD

B
]:

(1!z ) [YD

B
]/x) ) (1![YD

B
]/x)"K

4
/[»zz

O
]3. [12]

The positive (analytical) solution for [YD

B
] of Eq. [12] leads

to

[»DD

A
]"1!z ) [YD

B
]/x and [»DDDD

B
]"1![YD

B
]/x [13,14]

The solutions for the host ions follow immediately from [1],
[2]:

[Ce]
B
]"1![»DDDD

B
]![YD

B
] and [Sr]

A
]"1![»DD

A
]. [1@,2@]

At this point only the values of n, p and the corresponding
pO

2
remain to be determined. In the electroneutrality equa-

tion [6], n can be replaced by K
*
/p from Eq. [8]:

2 ) [»DD

A
]#[YD

B
]#4 ) [»DDDD

B
]#K

*
/p

"2 ) [»zz
O

]#[OHz
O
]#p. [6@]

Equation [6@] is again only a quadratic expression in p; all
other terms have known numerical values. Equation [6@] is
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solved for p. The electron concentration, n, is finally found
from [8] as

n"K
*
/p. [8@]

So far we have not employed Eq. [9], since we initially
‘‘replaced’’ it by the linear equation [»zz

O
]"an assumed

numerical value. The three concentrations entering Eq. [9]
define the partial pressure of oxygen corresponding to the
set of 10 determined concentrations, assuming they all are
within the physically possible range. We can thus accept the
solution if the concentration of the ith species fulfils
0([i](1 for [YD

B
], [»DD

A
], [»DDDD

B
], [Ce]

B
], [Sr]

A
], n and p; and

0([i](3 for [»zz
O

], [O]
O
], and [OHz

O
]. If the set of con-

centrations is accepted, we can insert [»zz
O

], [O]
O
], and

p into [9] and find the oxygen partial pressure that corres-
ponds to the equilibrium concentrations. The calculation is
next performed for a new value of [»zz

O
]. When [»zz

O
] has

covered the concentration interval of interest, we change to
a new value of pH

2
O and start all over again. The complete

calculation of a three-dimensional Brouwer diagram (10
concentrations versus pH

2
O and pO

2
for some 10]30

points in the pH
2
O—pO

2
plane) took initially 20—30 s, pro-

grammed in primitive GWbasic and performed on a 486
PC. In a Pascal version the calculation takes less than 1 s.
A printout of the program source code fills less than two A4
pages. An Excel spreadsheet version is available from the
author.

DISCUSSION

General Performance of the Algorithm

The algorithm is built on three loops: in the outermost
loop the program calculates for a set of Y-dopant concen-
trations and/or A/B ratios; for each doping level typically
6—12 pH

2
O values are calculated, typically in the range 10~6

to 1 atm; in the innermost cycle 500—1000 steps of [»zz
O

] in
the interval 10~14 — 0.5 are tested. The simulation thus stops
at an oxygen content corresponding to the Brownmillerite
composition ABO

2.5
. In order to obtain satisfactory numer-

ical precision, all variables in the algorithm must be de-
clared as double precision variables. Some intuition is
mandatory in order to find the right sequence in which the
concentrations are calculated: very small concentrations
should be calculated from mass action law expressions
rather than from linear difference equations. A test, compar-
ing the left-hand side and the right-hand side of the elec-
troneutrality condition (Eq. [6]), reveals cumulative errors,
which are usually around 10~14 to 10~18 atomic fraction.

Several features of the present procedure are evident: (i)
simulations can be carried out to ‘‘dangerous’’ or ‘‘non-
physical’’ high pressures; (ii) smooth transitions extending
over several decades of pO

2
from one defect regime to the

next are observed—this being in contrast to the ‘‘too
straight’’ lines usually seen in hand-drawn Brouwer dia-
grams; (iii) very small, but finite stoichiometry deviations
can be predicted. A few drawbacks of the present procedure
must admittedly be exposed: (i) The calculated defect con-
centrations will result in a set of discrete oxygen pressures,
the magnitude of which cannot be controlled; (ii) using
logarithmic steps in [»zz

O
] generates relatively few cal-

culated points in those (intermediate) pO
2

regimes, where
the oxygen stoichiometry varies little; however, Brouwer
diagrams do not usually have unexpected features in such
regions anyhow.

Defect schemes are often tested at the high and low
extremes of oxygen partial pressures by plotting the logar-
ithm of the measured total conductivity versus the logar-
ithm of pO

2
. The predicted slope, L log(p)/L log(pO

2
), is

traditionally derived from approximations to Eqs. [9] (in
combination with Eqs. [8] at low partial pressures). For the
doped perovskite structures one arrives at slopes of #1/4
and !1/4 (for the non-doped case $1/6).

‘‘Differentiated’’ Brouwer diagrams can easily be gener-
ated as output from the present simulations. * log [i]/
* log(pO

2
) calculated between adjacent points is a suffi-

ciently good approximation to L log[i]/L log(pO
2
) assum-

ing calculated points lie close. Figure 5 shows such a plot. It
is noted that deviations from the ‘‘magic’’ slopes occur for
p and n at low pO

2
. The region of L log[»zz

O
]/L log(pO

2
)"0

between 1 and 10~15 atm is the region of constant oxygen
stoichiometry. The use of ‘‘differentiated’’ Brouwer dia-
grams is hereby advocated. The algorithm for this model
system can, without modifications, be used to model perov-
skites, where protons have no or negligible solubility. This is
achieved by setting K

8
,0.

Actual Simulations

The equilibrium constants for SrCe
0.95

Yb
0.05

O
3B$

at
700°C, employed by Schober and Wenzl (14), were adjusted
to the present definitions of the equilibrium constants. The
values are K

09
"3 )K

1
"1.5]10~5 (atm)~1@2, K

*
"10~11,

and K
8
"10 (atm)~1@2.

The present model is probably the first attempt to formu-
late a complete model for the defect chemistry of proton
containing perovskites including cation vacancies. The fac-
tors controlling cation vacancy concentrations have there-
fore to be discussed in the following.

The inclusion of cation vacancies is described by a
Schottky equilibrium (Eq. [7]). Cation vacancy formation
will in general be favored by increasing temperature for
entropic reasons; i.e., it is predicted that K

4
increases with

temperature. This is counteracted by the fact that oxygen
vacancy formation via reaction [9] is probably also pro-
moted by increasing temperature. A certain concentration
of cation vacancies can in addition deliberately be imposed
on the system by synthesis of materials with A/B ratios



FIG. 1. Proton and other defect concentrations as function of pO
2
, at 700°C. K

4
"10~14, K

09
"1.5]10~5, K

*
"110~11, K

8
"10. Dopant level

x"0.05. (A) A/B ratio"1.0 and pH
2
O"10~6 atm; (B) A/B ratio"0.99 and pH

2
O"10~2 atm.

FIG. 2. Total oxygen content in a perovskite as function of partial
pressure of oxygen for four water partial pressures in the range 10~6

to 1 atm. K
4
"10~14, K

09
"1.5]10~5, K

*
"110~11, K

8
"10. A/B

ratio"1, dopant level x"0.05.
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deviating from unity. Large concentrations of B-site va-
cancies are, however, probably not possible due to the high
local charge on the B-site vacancy/ion. If a certain (as yet
unknown) concentration is exceeded, breakdown of the per-
ovskite structure will occur, resulting in formation of new
phases. Equation (7) can thus be visualized as a sort of
solubility product. Large concentrations of oxygen va-
cancies are possible, as in the disordered, high-temperature
phase of SrFeO

2.5`$
(Brownmillerite structure at low tem-

perature). In the latter material up to 17% of the oxygen
sites are empty. Similarly, structures with large deficits of
A ions can be derived from perovskites, e.g., WO

3
, where

there are no A ions needed at all to stabilize the structure.
Only a few reports have been found where the variation of

the A/B ratio in perovskites with Ce on the B site has been
addressed experimentally. Shima and Haile (15) investigated
undoped and Gd-doped BaCeO

3
, with A/B ratios ranging

from 0.96 to 1.04. In some cases A-site-deficient-materials
were obtained due to loss of BaO during the high-temper-
ature treatment. Ahlgren et al. (16) studied the sintering and
electrical properties of Y-doped SrCeO

3
with A/B ratios

ranging from 0.990 to 1.005 (in steps of 0.005) and found
that the best ceramic was obtained with A/B"0.995. How-
ever, no information on the magnitude of K

4
is available.

Test calculations show that a value for K
4
"10~20 or lower

corresponds to a neglegible tendency to cation vacancy
formation, while, for instance, K

4
"3.2]10~9 corresponds

to coexistence of approximately 2 at % of »zz
O

, »
DD

A
and

»
DDDD

B
. Figure 1A shows a representative Brouwer diagram for

a 5% Yb-doped strontium cerate at 700°C and a water
partial pressure of 10~6 atm. The Schottky equilibrium,
allowing formation of cation vacancies, has been included
with K

4
"10~14. The calculated cation vacancy concentra-
tions are around 3]10~5 atomic fraction; the A- and B-site
vacancy concentrations are equal, since the A/B ratio for
this calculation is unity. The curves showing n- and p-type
concentrations are symmetrical around a horizontal line
passing through the point, where n"p (at around
pO

2
"10~8 atm). The proton content and [»zz

O
] increase at

low pO
2
, which is more clearly illustrated in Figs. 2 and 3.

The increase in protons at low pO
2

is a consequence of the
increase in [»zz

O
], giving room to more water uptake via

reaction [10]. For a more detailed discussion of this effect,
see Ref. (4). Figure 1B shows a calculation for the same
values of equilibrium constants as in Fig. 1A, but the water



FIG. 3. Dependence of proton content (atomic fraction) on the square root of water partial pressure (atm) for three different oxygen partial pressures
(atm). Values of equilibrium constants and composition are as in Fig. 2.

FIG. 4. Effect of A/B ratio on proton content and oxygen vacancy
concentrations at pH

2
O "1 atm and 10~1 atm of pO

2
; dopant level

x"0.1; K
4
"0. The concentrations have been normalized with respect to

total amount of B ions in the solid.
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vapor pressure has been increased from 10~6 in Fig. 1A to
10~2 atm in Fig. 1B. At the same time the A/B ratio has
been lowered to 0.99. Several things have happened: the
proton concentration is now higher than the oxide ion
vacancy concentration; the concentrations for the cation
vacancies now follow two different curves—the B-site va-
cancy concentration is roughly a factor of 20 higher than the
A-site vacancy concentration; and finally, the crossover
pO

2
, where n"p, has moved toward higher pO

2
.

In situations far from saturation by protons, the proton
content of the perovskite will sometimes follow the so-called
Sieverts law, according to which the proton content is
proportional to the square root of the partial pressure of
water vapor. The law follows from Eq. [10], when one
assumes [»zz

O
] and [O]

O
] to be constant. In reality these two

species are not constant in concentration, and the ratio of
overall oxygen content to total amount of B ions does not
have a general limiting value of 3![YD

B
]/2. The pO

2
re-

gion,over which in a thermogravimetric experiment one
observes a constant weight, therefore cannot be used as
a reference point unless one has supplementary information.
Figure 2 illustrates the predicted overall stoichiometry for
partial pressures of water from 10~6 to 1 atm. The proton
content increases monotonically with increasing pressure.
Only at the lowest water partial pressure of 10~6 atm does
one find that the limiting oxygen content is close to 3!
[YD

B
]/2"2.975. Figures 3a and 3b in the paper of Schober

and Wenzl (11) were supposed to illustrate this trend,
but unfortunately show the results of a calculation corre-
sponding to equilibrium constants different from those
quoted in (11).
Figure 3 shows the protonic content as a function of the
square root of the water partial pressure in the same range
as in Fig. 2. Three deviations from ‘‘conventional’’ behavior
are seen when cation vacancies are included in the defect
model: (i) the proton content at high water partial pressure
can exceed the doping level, here 0.05 atomic fraction; (ii)
Sieverts law is obeyed only at very low partial pressure of
water; (iii) a second linear regime in this square root plot is
surprisingly also observed above 0.1 atm of pH

2
O. Such an



FIG. 5. Differentiated Brouwer diagram; data are the same as used for
the generation of Fig. 1B. Slope is calculated for the various species, i, as
d log [i]/d log(pO

2
).
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observation could lead the experimenter to infer, by extra-
polation to pH

2
O "0 atm, that the perovskite contains

a certain amount (in the present case approximately 0.03
atomic fraction) of nonremovable protons.

Deviations of the A/B-ratio were finally modeled. Forcing
the system to accomodate cation vacancies on either the
A or B site has two effects: (i) The deficit of charge on the
respective site has the same effect as if the system has been
doped to a higher Y level. Fig. 4 shows the resulting concen-
trations of [OHz

O
] and [»zz

O
] for A/B ratios in the range

0.950 to 1.053; (ii) The proton content is seen to increase as
the A/B deviates from unity, the increase being approxim-
ately twice as strong for the B-ion-deficient regime. This is
understandable since the ratio of the charges of »

DDDD

B
and

»
DD

A
is also equal to two. The equilibrium concentration of

oxygen vacancies also increase slightly when the A/B ratio
deviates from unity. The simulations furthermore show that
materials with same doping level, but different A/B ratio,
will, when compared at the same pO

2
and pH

2
O, have very

similar concentrations of hole carriers. Predictions and ar-
guments based on isolated equilibria, such as the Schottky
equilibrium, Eq. [7], in combination with Eq. [10] will
inevitably lead to erroneous conclusions.

Extension to Other Defect Problems

Associates between oxygen vacancies and dopants/host
ions were left out in the present treatment, due to complete
ignorance regarding its importance in SrCeO

3
-type mater-

ials. Test cases with strong association were examined by
Schober and Wenzl (14). The present author will in the near
future publish algorithms treating the following complex
defect systems: (i) over- and understoichiometric perovskites
such as (La

1~x
Sr

x
)
y
MnO

3$d with varying A/B ion ratios; (ii)
Mg-doped LiFeO

2
(rock salt structure); (iii) defect associ-

ation in doped and reduced ceria; and (iv) doped pyrochlore
materials. At present the technique is being applied to
modeling of the defect chemistry of the oxygen separation
membrane material Sr

4
Fe

6~x
Co

x
O

13Bd (17).
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